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EMPIRICAL PRICING KERNELS: EVIDENCE FROM THE HONG 

KONG STOCK MARKET 
 

 

Abstract. In this paper, we investigate the empirical pricing kernels for the 

Hong Kong stock market. We deal with semiparametric estimation of the empirical 

pricing kernel as the ratio of the objective and risk-neutral densities, under a 
consistent parametric framework of the non-affine GARCH diffusion model. An 

efficient importance sampling (EIS)-based joint maximum likelihood estimation 

method is developed for the objective and risk-neutral densities, using the Hang 
Seng Index (HSI) and index warrants data. Empirical results show that there exists 

a reference point and around this reference point the empirical pricing kernel 

exhibits a hump. The market utility function does not correspond to standard 
specification of utility function in the classical expected utility theory, but exhibits 

a convex form below the reference point and a concave form above it, and the 

investors act risk seeking around the reference point. 

Keywords: pricing kernel; utility function; risk aversion; GARCH diffusion 
model; maximum likelihood estimation. 
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1.  Introduction 

The behaviour of market investors has always been in focus in the literature 
on financial economics. Naturally, it involves the empirical pricing kernel 

(Rosenberg and Engle, 2002). The asset pricing kernel contains a wealth of 

information, which summarizes the pattern of the market utility function and 

investor risk preference. 
In standard economic theory, the pricing kernel is a monotonically decreasing 

function of the market return, corresponds to a concave utility function and 

investor risk aversion. However, there has been a lot of discussion about the 
reliability of this theory. In particular, several recent empirical studies showed that 

there is a reference point near the zero return and around this reference point the 
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empirical pricing kernel exhibits a hump (see e.g., Jachwerth, 2000; Detlefsen et al., 
2007). Hence, the investors act risk seeking around the reference point. The 

non-monotonicity of the empirical pricing kernel has become known as the 

"pricing kernel puzzle" or "risk aversion puzzle". Numerous attempts have been 
undertaken to explain the reason for the pricing kernel puzzle from different 

perspectives (see e.g., Detlefsen et al., 2007; Ziegler, 2007; Chabi-Yo et al., 2008; 

Bakshi et al., 2010; Gollier, 2011; Chabi-Yo, 2012; Christoffersen et al., 2013; 

Hens and Reichlin, 2013; Barone-Adesi et al., 2015, and among many others). On 
the other hand, Beare and Schmidt (2014) and Golubev et al. (2014) find the 

evidence of non-monotonically decreasing pricing kernel by conducting formal 

statistical test about the shape of the pricing kernel. Their results provide empirical 
support for the financial economics literature on the pricing kernel puzzle. 

In the last decades, there is a large literature on the estimation of the pricing 

kernel. A number of earlier papers estimate the pricing kernel using aggregate 
consumption data (see e.g., Hansen and Jagannathan, 1991; Chapman, 1997), 

problems with imprecise measurement of aggregate consumption can weaken the 

empirical results of these papers. Recently, many authors have used the historical 

returns and option prices data to estimate the pricing kernel. This approach avoids 
the use of aggregate consumption data. Based on the returns and option prices data, 

three types of estimation approaches for estimating the pricing kernel have been 

developed: parametric approaches (e.g., Rosenberg and Engle, 2002), 
nonparametric approaches (e.g., Aït-Sahalia and Lo, 2000; Jackwerth, 2000; Song 

and Xiu, 2016) and semiparametric approaches (e.g., Chernov, 2003; Detlefsen et 

al., 2007). 

However, the parametric approaches which impose a strict structure on the 
kernel are too restrictive to account for the dynamics of the risk preference, while 

the nonparametric approaches depend a lot on the bandwidth selection which 

influences the shape of the pricing kernel. The semiparametric approaches avoid 
the use of parametric pricing kernel specification and bandwidth selection, which is 

flexible and simple to implement. Therefore, we dervie the empirical pricing kernel 

in this paper by employing a semiparametric approach based on the objective and 
risk-neutral densities. Previous econometrics studies are concerned with deriving 

the empirical pricing kernel by estimating the objective and risk-neutral densities 

separately, and relying on the discrete-time GARCH model or/and Heston (1993) 

model. Our estimation procedure is based on the objective and risk-neutral 
densities and these distributions are derived jointly with a consistent parametric 

stochastic volatility framework of non-affine GARCH diffusion model. From these 

densities we construct the corresponding pricing kernel. The GARCH diffusion 
model is a non-affine stochastic volatility model, which has been found to capture 

the dynamics of the financial time series much better than the popular affine 

stochastic volatility model of Heston (1993). Moreover, a number of recent papers 

have provide strong evidence for the GARCH diffusion model not only for returns 
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data but also for options data (e.g., Christoffersen et al., 2010; Wu et al., 2012; 

Kaeck and Alexander, 2013). Thus, the model is well suited for our estimation of 

the pricing kernel. 
The objective and risk-neutral densities are derived by estimating jointly the 

objective and risk-neutral parameters of the GARCH diffusion model. In this paper, 

we develop an joint estimation procedure for estimating the model using the Hong 
Kong Hang Seng Index (HSI) and index warrant prices data. The fundamental 

advantage of this approach is that all the parameters of the model can be reliably 

identified in a way that maintains the internal consistency of the objective and 

risk-neutral measures. The joint estimation procedure we adopt in this paper is 
based on the maximum likelihood method where the likelihood function is 

evaluated using the efficient importance sampling (EIS) technique of Richard and 

Zhang (2007). The EIS-based joint maximum likelihood method is easy to 
implement and enables us to estimate the parameters of the GARCH diffusion 

model efficiently. 

The rest of the paper is organized as follows. In Section 2, we describe the 

theoretical relationship between the pricing kernel, market utility function and 
absolute risk aversion and the objective and risk-neutral densities. In Section 3, we 

present under both the objective and risk-neutral measures the GARCH diffusion 

model, which serves as the basis for the estimation of the objective and risk-neutral 
densities, and discuss how to estimate jointly the objective and risk-neutral 

parameters of the GARCH diffusion model using data on the HSI returns and index 

warrant prices. In Section 4, we discuss the empirical pricing kernels obtained from 
the HSI data, and we conclude in Section 5. Technical details are provided in 

appendices to the paper. 

 

2.  Pricing kernel, market utility function and absolute risk aversion 

In the absence of arbitrage, there exists one positive random variable ,t TM  

such that the current price tP  of an asset with payoff T  at time T  is 

,[ ( ) ( ) | ]t t T T T T tP E M X X P F                                  (1) 

where TX  is the state variable of the economy (e.g., log aggregate consumption), 

E P
 is the expectation with respect to the objective measure P , ,t TM  is called 

the pricing kernel, and tF  is the information up to and including time t . 

According to the risk-neutral valuation principal, the price tP  of the asset 

can be equivalently represented as 

[ ( ) | ]r

t T T tP E e X ¤ F                                       (2) 

where E¤
 is the expectation with respect to the risk-neutral measure ¤ , r  is 
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the risk free interest rate, T t   . Assuming that , ( )t T Tp X  and , ( )t T Tq X  are  

the objective density and risk-neutral density of TX , respectively. From Eq. (2), 

we have 

,( ) ( )r

t T t TP e x q x dx ¡
,

,

,

( )
( ) ( )

( )

t Tr

T t T

t T

q x
e x p x dx

p x

 ¡  

    
,

,

( )
( ) |

( )

t T Tr

T T t

t T T

q X
E e X

p X


 

  
  

P F                             (3) 

Compare Eqs. (1) and (3), we get 

,

,

,

( )
( )

( )

t T Tr

t T T

t T T

q X
M X e

p X

                                       (4) 

In a dynamic equilibrium model, the pricing kernel is equal to the 

intertemporal marginal rate of substitution, i.e., 

,

( )
( )

( )

T
t T T

t

U X
M X

U X





                                          (5) 

Here the state variable, TX , is log aggregate consumption, which can be 

substituted with log equity index or equity index return (e.g., Rosenberg and Engle, 

2002). Thus, from Eqs. (4) and (5), we have 

,

,

( ) ( )

( ) ( )

t T Tr T

t T T t

q X U X
e

p X U X

 



                                       (6) 

Then we can derive the market utility function as 

,

,

,

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

T T

t t

X X
t Tr

T t t t t t T
X X

t T

q x
U X U X e U X dx U X U X M x dx

p x

        

(7) 

Besides the pricing kernel and market utility function, we are also interested in 
the investor risk preference in the market. Such risk preference is often described 

in terms of Arrow-Pratt measure of absolute risk aversion that is define by 

( )
( )

( )

T
T

T

U X
ARA X

U X


 


                                        (8) 

From Eq. (6), we get 

,

,

( )
( ) ( )

( )

t T Tr

T t

t T T

q X
U X e U X

p X

                                   (9) 

and 
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, , , ,

2

,

( ) ( ) ( ) ( )
( ) ( )

( )

t T T t T T t T T t T Tr

T t

t T T

q X p X q X p X
U X e U X

p X


 

          (10) 

Plugging Eqs. (9) and (10) into Eq. (8), we get the absolute risk aversion in terms 

of the objective and risk-neutral densities: 
2

, , , , ,

, ,

( )( ( ) ( ) ( ) ( )) / ( )
( )

( ) ( ) / ( )

r

t t T T t T T t T T t T T t T T

T r

t t T T t T T

e U X q X p X q X p X p X
ARA X

e U X q X p X









  
 


 

, ,

, ,

( ) ( )

( ) ( )

t T T t T T

t T T t T T

p X q X

p X q X

 
                                  (11) 

 

3.  Estimation methodology 
We adopt the non-affine GARCH diffusion model to characterize the 

dynamics of the HSI index, and form the basis for the estimation of the objective 

and risk-neutral densities. We first describe the model under the objective and 

risk-neutral measures in Section 3.1, and then discuss how to estimate jointly the 
objective and risk-neutral parameters of the GARCH diffusion model using data on 

the HSI returns and index warrant prices in Section 3.2. Additional informations 

about likelihood approximation and unobservable state variables estimation are 
given in Appendices A and B. 

3.1  The model 

In the GARCH diffusion model, the dynamics under the objective measure of 

the HSI index price tS  and the associated volatility tV  are assumed to be given 

by 

1t t t t tdS S dt V S dW 
                                     (12) 

2( )t t t tdV V dt V dW                                       (13) 

where   is the mean of the HSI returns, /   is the long-run mean of 

volatility,   is the mean reversion rate of volatility,   is the volatility of 

volatility, and 1tW  and 2tW  are two standard Brownian motions with 

1 2Corr ( , )t t tdW dW  .  

Similar to Chernov and Ghysels (2000), we assume that the GARCH diffusion 
model have the same form under the risk-neutral measure as under the objective 

measure, and the dynamics of ( , )t tS V  under the risk-neutral measure are of the 

form 

*

1t t t t tdS rS dt V S dW 
                                      (14) 

* * *

2( )t t t tdV V dt V dW                                      (15) 
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where r  is the risk-free interest rate, 
*

1tW  and 
*

2tW  are two standard Brownian 

motions under the risk-neutral measure with 
* *

1 2Corr ( , )t t tdW dW  . 

Following Wu et al. (2012), the characteristic function for the log HSI index 

lnT TX S  can be derived. Then the objective/risk-neutral densitiy for TX  can 

be obtained by inverting the corresponding characteristic function. That is, 

, ,

1
( ) ( )

2
TX

t T T t Tp X e f d  


 
i

¡
                              (16) 

*

, ,

1
( ) ( )

2
TX

t T T t Tq X e f d  


 
i

¡
                               (17) 

where ,t Tf  and 
*

,t Tf  are the characteristic functions for TX  under the objective 

and risk-neutral measures, respectively, and the integrals in Eqs. (16) and (17) can 

be easily computed by using some numerical methods.  

3.2  Joint maximum likelihood estimation 

In this subsection, we develop a maximum likelihood method to estimate 

jointly the objective and risk-neutral parameters of the GARCH diffusion model 

using data on the HSI returns and index warrant prices. 

Taking the stabilizing transformation lnt tX S , lnt th V . By Itô's lemma, 

we have 

/2

1

1
( )

2
t th h

t tdX e dt e dW                                    (18) 

2

2

1
( )

2
th

t tdh e dt dW   
                                 (19) 

In the empirical literature, the above continuous-time model must be 

discretized to facilitate the parameter estimation. A simple Euler scheme leads to 

the following discrete-time stochastic processes 

1 1
/21

( )
2

t ti i

i

h h

t i i iy e e                                     (20) 

1

1

21
( )

2

ti

i i

h

t t i i ih h e    




                             (21) 

where 
1i i it t ty X X


   is the HSI return, 1i i it t     is the time interval, i  

and i  are independent and identically distributed (i.i.d.) standard normal random 

variables with Corr ( , )t i i   . 

To perform joint estimation of the objective and risk-neutral parameters, we 

consider the additional information provided by the HSI warrant prices. We 
assume that the observed warrant price is equal to the theoretical value plus a 

pricing error: 
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( , , , , )
i i it i i t t iC C t K S V                                     (22) 

where the nonlinear function ( , , , , )
i ii i t tC t K S V  is the pricing formula for 

European warrants in the GARCH diffusion model (see Wu et al., 2012), and i  

are i.i.d. standard normal random variables and independent of i  and i . 

It is obvious that Eqs. (20)-(22) constitute a nonlinear and non-Gaussian 
state-space model with volatility is the unobservable state variable. To estimate this 

model using maximum likelihood method, we need to integrate out the 

unobservable state variables from the joint density of the observations and 
unobservable state variables and derive an explicit expression for the marginal 

likelihood of observations. 

Let 
1

( , , )
Nt tC C C    be a vector of the N  observed HSI index warrant 

prices, 
1

( , , )
Nt tY y y    be a vector of the N  observed HSI returns and 

1
( , , )

Nt tH h h    be a vector of the unobservable state variables (log volatilities). 

The likelihood function of the model can be expressed as 

0 0
( , ; , ) ( , , ; , )t tC Y h p C Y H h dH  L                          (23) 

where 
* *( , , , , , , , )          is the parameter vector, which consists of 

the objective and risk-neutral parameters 
* *( , , , , , , )         of the GARCH 

diffusion model and the parameter   in measurement equation (22), and 

0
( , , ; , )tp C Y H h  is the joint density of C , Y  and H , which can be written 

as 

0 0
( , , ; , ) ( | , , ) ( , ; , )t tp C Y H h p C Y H p Y H h     

     
1 1

1

( | , , ) ( | , ) ( | , , )
i i i i i i i i

N

t t t t t t t t

i

p C y h p y h p h y h
 



             (24) 

where ( | , , )
i i it t tp C y h   is the normal density of 

it
C  with the conditional mean 

( , , , , )
i ii i t tC t K S V  and the conditional variance 

2 , 
1

( | , )
i it tp y h


  is the 

normal density of 
it

y  with the conditional mean 1
1

( )
2

ti
h

ie    and the 

conditional variance 1ti
h

ie    and 
1

( | , , )
i i it t t ip h y h


  is the normal density of 

it
h  

with the conditional mean 
it

  and the conditional variance 
2

it
  which are given 

by 
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1

1

1 1

2

/2

1
( )

1 2( )
2

ti

i
ti

i i ti

h

t i
h

t t i h

y e

h e
e


    





 


  

               (25) 

2 2 2(1 )
it i                                                (26) 

Given the likelihood function in Eq. (23), the ML estimates of parameters of 
the state-space model in Eqs. (20)-(22) are then given by 

0 0
0

( , )

ˆˆ( , ) arg max ln ( , ; , )
t

t t
h

h C Y h


  L  

As a typical financial time series has at least several hundreds of observations, 
the high-dimensional integral in the right hand of Eq. (23) rarely has analytical 

expression. Meanwhile, using the traditional numerical integration methods to 

approximate the integral is also infeasible. In order to overcome this problem, we 
adopt the EIS technique to compute the likelihood function. The EIS algorithm for 

likelihood approximation is presented in Appendix A. To extract the latent spot 

volatility, we use a particle filter algorithm which is given in Appendix B. 
 

4.  Empirical analysis 

In contrast to many previous studies that have focused mainly on the S&P 500 

data, we investigate in this paper the empirical pricing kernels by focusing on the 
HSI data (HSI index and its warrants). The HSI index serves as an approximation 

to the Hong Kong economy, and it can be used as a proxy for market portfolio. The 

HSI index warrants were chosen over the HSI index options because the HSI 
warrants market is a more liquid/active market than the HSI options market in 

Hong Kong. 

4.1  The data 
In the empirical analysis we use daily data on the HSI returns and index 

warrant prices from July 21, 2011 to May 31, 2013. The HSI returns computed are 

logarithmic, i.e., 1log logt t tx p p   , where tp  is the closing price. The HSI 

index warrant is chosen as the HS-HSI@EC1309 which is one of the most actively 

traded HSI index warrants. The selected warrant is European-style call warrant 
which is similar to a European-style call option. Its maturity date is September 27, 

2013, the exercise price is 25,000 and the exercise ratio is 12,000. The sample size 

is 918 for the joint data. The time-series of HSI returns and HS-HSI@EC1309 
prices are plotted in Figure 1. Finally, we use the 1-year Hong Kong Interbank 

Offer Rate (HIBOR) as a proxy for the risk-free interest rate. All of the data are 

obtained from the Wind Database of China. 

Summary statistics for the HSI returns are shown in Table 1. As can be seen 
from the table, the HSI returns are skewed and leptokurtic. Jarque-Bera statistics 

suggests that the assumption of normality is rejected for the HSI return series. 

Furthermore, from Figure 1 we can observe that the HSI returns exhibit 
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time-varying volatility and volatility clustering during the sample period.  

 

 
Figure 1: Time series of HSI returns and HS-HSI@EC1309 prices for the 

sample period from July 21, 2011 to May 31, 2013 

 
 

Table 1. Summary statistics of HSI returns 

Mean Max Min Std. Skew Kurt 
Jarque-

Bera 

0.0000 0.0552 -0.0583 0.0137 -0.2840 5.6931 
144.875 
(0.000) 

Note: The number in parenthesis is the p-values of Jarque-Bera tests. 

 

 

4.2  Estimation results 

Based upon data on the HSI returns and HS-HSI@EC1309 prices, the 

objective and risk-neutral parameters of the GARCH diffusion model are estimated 
jointly by applying the maximum likelihood method described in Section 3. Table 

2 reports the estimation results.  

The estimated parameters allow us to estimate the volatility, tV , via the 

particle filter algorithm. The number of particles used in the empirical studies is 
1000. Figure 2 plots the estimated volatilities. 
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Table 2. Estimation results 


   

   
 

0.2447 

(0.0730) 

0.1947 

(0.0507) 

2.3710 

(1.5585) 

1.2780 

(0.0175) 

-0.5373 

(0.0155) 

*  
*
   Log-lik  

0.0321 

(0.0076) 

0.8001 

(0.0231) 

0.0004 

(0.0000) 
3515.85  

Note: The EIS-ML method is implemented by using S=32 Monte Carlo draws and 

5 EIS iterations. Log-lik is the log-likelihood value. The number in parenthesis is 

the standard error. 
 

 
Figure 2: Estimated volatilities 

 

 

Based on the estimates of the objective and risk-neutral parameters and 
volatilities, the objective and risk-neutral densities of the HSI returns can be 

obtained by using Eqs. (16) and (17). The estimation results of the objective and 

risk-neutral densities are presented in Figure 3 for the day May 31, 2013 and for 

two time to maturities: 0.5   and 1 years. It can be seen that there are large 

discrepancies in the estimation results of the objective and risk-neutral densities. 
By using the Eqs. (4), (7) and (11), we derive the estimated empirical pricing 

kernels, market utility functions and absolute risk aversion functions of HSI returns 
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on May 31, 2013 for two time to maturities: 0.5   and 1 years, which are 

presented in Figures 4-6. As can be seen from Figure 4, our estimated empirical 

pricing kernels are not monotonically decreasing, and these are not in accordance 

with the classical economic theory. The estimated empirical pricing kernels have  
humps located at small losses (corresponding to a HSI return of about -10% for 

time to maturity 0.5   and a HSI return of about -12% for time to maturity 

1  , hereafter referred to as reference points). Our results provide empirical 

support for the literature on the pricing kernel puzzle. 

 

 

 

     
Figure 3: Estimated objective and risk-neutral densities on May 31, 2013 for 

time to maturities 0.5   and 1 years 

 
 

 

    
Figure 4: Empirical pricing kernels on May 31, 2013 for time to maturities 

0.5   and 1 years 
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Figure 5: Market utility functions on May 31, 2013 for time to maturities 

0.5   and 1 years 

 
 

     
Figure 6: Absolute risk aversion functions on May 31, 2013 for time to 

maturities 0.5   and 1 years 

 

 

The pricing kernels are the link between the absolute risk aversions and the 
market utility functions that are presented in Figure 5. As can be seen from the 

figure, the estimated market utility functions are increasing but do not correspond 

to standard specification of utility function in the classical expected utility theory. 

Specifically, the estimated market utility function exhibits a convex form below the 
reference point and a concave form above it, which is in accordance with the utility 

function form proposed by Kahneman and Tversky (1979). 

Finally, we consider the absolute risk aversions in the Hong Kong stock 
market. The estimated absolute risk aversion functions are presented in Figure 6. It 

can be seen from the figure that the absolute risk aversion is negative around the 
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reference point, which implies that investors act risk seeking around the reference 

point. Our results are much in line with the prospect theory of Kahneman and 

Tversky (1979). 
 

5.  Conclusion 

In this paper, we employ a semiparametric approach to derive the empirical 
pricing kernels as the ratio of the objective and risk-neutral densities for the Hong 

Kong stock market. The objective and risk-neutral densities are estimated jointly 

by the maximum likelihood method based on the EIS technique, under a consistent 

parametric framework of the non-affine GARCH diffusion model and using the 
HSI returns and index warrant prices data. Empirical results show that there exists 

a reference point (corresponding to a HSI return of about -10%/-12% for 

half-year/one-year maturity) and around this reference point the empirical pricing 
kernel exhibits a hump. The market utility function does not correspond to standard 

specification of utility function in the classical expected utility theory, but exhibits 

a convex form below the reference point and a concave form above it, and the 

investors act risk seeking around the reference point. Our results are much in line 
with the prospect theory of Kahneman and Tversky (1979) and provide empirical 

support for the literature on the pricing kernel puzzle. 
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Appendix A.  EIS algorithm to likelihood approximation 
The EIS algorithm for estimating the likelihood function is given as follows: 

Step 1: Draw initial samples 
1

( ) ( )

1{ , , }
N

s s S

t t sh h   from the so-called natural 

importance sampler 
1 1{ ( | , , )}

i i i

N

t t t ip h y h
  . 

Step 2: Calculate ˆ
it

a  by estimating the following regression model (working 

backwards: 1i Nt t t  ) 

1 1 1 1

( ) ( ) ( ) ˆln ( | , , ) ln ( | , ) ln ( , , )
i i i i i i i i i

s s s

t t t t t t t t tp C y h p y h y h a
   

     

( ) ( ) 2 ( )

1, 2, ( ) , 1, ,
i i i i i i

s s s

t t t t t tc a h a h u s S       

where
1

2 2 2

2 2 2

1
ln ( , , ) ln

2 2 2

t ti i i

i i i i

i t ii

a a t

t t t t

t a t

y h a
  


  

   , 
2

1, 2

i

t t ii i

i

t

a a t

t

a


 


 
  

 
 

, 

2

2

2

2,1 2

i

ti

i i

t

a

t ta








, 

1 1 1 1
ˆ( | , ) ( , , ) 1

N N N N N Nt t t t t tp y h y h a
   

   , 1, 2,( , )
i i it t ta a a , 

it
  and 

2

it
  are given in Eqs. (25) and (26). 

Step 3: Draw new samples 
1

( ) ( )

1{ , , }
N

s s S

t t sh h   from the EIS sampler 

1 1
ˆ{ ( | , , )}

i i i i i

N

t t t t t im h y h a
 

, where 
it

m  is the normal density (called EIS density) of 

it
h  with the conditional mean 

ti
a  and the conditional variance 

2

ti
a . 

Step 4: Repeat Step 2 and Step 3, until a reasonable convergence of the 

parameters ˆ
it

a  is obtained. 

Step 5: Calculate the likelihood approximation using 
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µ 1 1

1

( ) ( ) ( ) ( )

0 ( ) ( )
1 1

( | , , ) ( | , ) ( | , , )1
( , ; , )

ˆ( | , , )

i i i i i i i i

i i i i i

s s s sNS
t t t t t t t t

s s
s i t t t t t

p C y h p y h p h y h
C Y h

S m h y h a

 


 

   
   

  
 L  

Following Richard and Zhang (2007), a same set of Common Random 
Numbers (CRNs) is used to obtain the draws from the EIS sampler in order to 

ensure the likelihood approximation be a smooth function of the parameter vector. 

Typically, a reasonable convergence can be obtained after 3-5 iterations. 
 

Appendix B.  Particle filter algorithm for extracting latent state 

variables 
The particle filter algorithm for extracting the latent state variables is given as 

follows: 

Step 1: Given a set of random samples 
1 1

(1) ( ){ , , }
i i

M

t th h
 
  from the probability 

density function 
1 1

( | )
i it tp h
 

F . 

Step 2: Draw samples 
(1*) ( *){ , , }
i i

M

t th h  from the probability density 

1
( | , )

i it tp h h

 . 

Step 3: Compute the normalised weight for each sample 

1

1

( *) ( *) ( )

( *) ( *) ( )

1

( | , , ) ( | , , )
, 1, ,

( | , , ) ( | , , )

i i i i i i

i i i i i i

j j j

t t t t t t

j M
l l l

t t t t t t

l

p C y h p y h h
q j M

p C y h p y h h







 
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 
 

Thus define a discrete distribution over 
(1*) ( *){ , , }
i i

M

t th h , with probability mass 

1{ , , }Mq q . 

Step 4: Resample M  times from the discrete distribution defined above to 

generate samples 
(1) ( ){ , , }
i i

M

t th h . 


